
Volume 11 (1) 1998, pp. 1 { 5

Survey of Relevant Concepts

Jacques J.B. de Swart

CWI, P.O. Box 94079,

1090 GB Amsterdam, The Netherlands

and

Paragon Decision Technology B.V.

P.O.Box 3277

2001 DG Haarlem, The Netherlands

Implicit Di�erential Equations (IDEs) can model many processes in industry.

For example, to test the design of a computer chip, its behavior is modeled by

a set of IDEs. If the solution of these equations satis�es the requirements, then

the chip is manufactured; if not, then the design is to be adjusted. Thus the

production process becomes much cheaper than in the case where all designs|

including the wrong ones|are �rst manufactured and tested afterwards. Other

examples that can be modeled by di�erential equations are the behavior of a

train on a rail track, the steering of robots and chemical reactions.

The time required to solve IDEs can be reduced by designing algorithms

that can be implemented on modern computer architectures with more than

one processor, so-called parallel computers. To increase the speed of the fastest

state-of-the-art processor becomes more di�cult and costly, whereas the price

of simpler, but still reasonably fast processors has dropped considerably over

the years. This development inspired many computer companies to start the

production of parallel computers.

The di�erential equations arising from the modeling process may have dif-

ferent forms. The most simple formulation of interest here is that of the Initial

Value Problem (IVP) for Ordinary Di�erential Equations (ODEs), which reads:

Given a function f : IRd ! IRd, �nd the function y : IR! IRd that ful�lls

y0(t) = f(y(t)) ; y(t0) = y0 ; t0 � t � tend : (1)

Of course in practice one often encounters more complex classes of di�erential

equations, but for simplicity of notation, we restrict ourselves mostly to the

class de�ned by (1).

Almost every method to solve (1) numerically is a step-by-step method;

one divides the interval [t0; tend] in subintervals [t0; t1], [t1; t2], : : : , [tN�1; tN ],

1



where tN = tend, and computes approximations y1, y2, : : : , yN to the solution

at the end of each subinterval. The accuracy of the method will depend on the

length of the subintervals, which we call the stepsize and denote by h, which

may depend on the speci�c subinterval. If yN�y(tend) = O(h
p), then the order

of the method is p.

The computation of yn in a conventional step-by-step method depends on

approximations in time points prior to tn; to proceed in time, information from

the past has to be available. This means that the numerical solution process

is to a large extent sequential by its nature and o�ers little scope for paral-

lelization. Nevertheless, several attempts have been made to exploit parallel

computer architectures, which has been classi�ed by Gear [?] as follows:

1. parallelism across the problem,

2. parallelism across time,

3. parallelism across the method.

The �rst class consists of rather obvious ways to distribute the various compo-

nents of the system of ODEs amongst the available processors and will not be

discussed here. The strategy for methods in class 2 is to compute approxima-

tions to the solution at di�erent time points concurrently. Solution techniques

belonging to the third category employ parallelism inherently available within

a method. For example, the method may be such that the computation of yn
requires several evaluations of f that can be done in parallel. Notice that this

form of parallelism may even be e�ective for scalar problems (i.e. d = 1 in (1)),

whereas approach 1 requires high d-values. Due to the limited size of this spe-

cial issue of CWI Quarterly, we will con�ne ourselves to methods belonging to

class 3. For methods based on parallelism across time, we refer to [?, ?, ?, ?].

Since most approaches of type 3 are based on some variant of a Runge{

Kutta (RK) method, we brie
y resume some terminology of RK methods.

A Runge{Kutta method has the following form:

Yn = 1l
 yn�1 + h(A
 I)F (Yn) ; (2)

yn = yn�1 + h(bT 
 I)F (Yn) : (3)

Here, Yn is the so-called stage vector, which contains s approximations Yn;i,

i = 1; 2; : : : ; s, to the solution in the time points tn�1 + cih, i.e.,

Yn = (Y T
n;1; Y

T
n;2; : : : ; Y

T
n;s

)T;

where Yn;i � y(tn�1 + cih). The scalars ci determine where the solution is ap-

proximated and are called the abscissae. The length of the subinterval [tn�1; tn]

is the stepsize and is denoted by h. The symbol 
 denotes the direct product,

which is de�ned by
2
64

v11 � � � v1l
...

...

vk1 � � � vkl

3
75
W =

2
64

v11W � � � v1lW
...

...

vk1W � � � vklW

3
75 ;

2



where V = (vij) and W are matrices of arbitrary dimensions. Furthermore, 1l

stands for the s-dimensional vector (1; : : : ; 1)T; I is the identity matrix of the

problem with dimension d, and F (Yn) means the componentwise f -evaluation,

i.e.

F (Yn) =

0
B@

f(Yn;1)
...

f(Yn;s)

1
CA ;

so that F (Yn) is of dimension sd. The s � s matrix A and the s-dimensional

vector b contain the parameters of the Runge{Kutta method. If the matrix A

is full, then we call (2){(3) an Implicit Runge{Kutta method (IRK). In most

cases the function f in (1) is non-linear, which implies that for an IRK the

sd-dimensional system (2) is non-linear. Once Yn is solved from this system,

we can compute the approximation to the time point tn by formula (3).

To select the type of RK method and the strategy to solve Yn from the

non-linear system, the notion of sti�ness is important. If the time scales of

the various solution components vary greatly and if the rapidly changing com-

ponents are physically unrelevant, then we call a problem sti�. For example,

if both high and low frequency signals are present in an electrical circuit but

the highly frequent signals are small in magnitude, then the modeling of such

a circuit gives rise to a sti� system of di�erential equations. Such a problem

imposes severe stability demands on the numerical method.

For non-sti� problems we may use so-called �xed-point iteration to �nd Yn.

Given some initial guess Y
(0)
n , we de�ne a sequence of iterates by

Y (j)
n

= 1l
 yn�1 + h(A
 I)F (Y (j�1)
n

) ; (4)

and accept Y
(m)
n as approximation for Yn if it ful�lls (2) accurately enough.

The method for determining Y
(0)
n is called the predictor and (4) the formula

for the corrector. The paper by Sommeijer and part of the paper by Van der

Houwen and Sommeijer develop predictor{corrector methods, in which several

stages can be computed in parallel.

Since many applications yield sti� systems of di�erential equations, most

methods presented in this volume deal with numerical solution techniques ca-

pable of handling sti�ness. The �xed-point iteration may cause severe stepsize

restrictions to converge for sti� problems and can not be used anymore. A

well-known alternative is the modi�ed Newton process, which takes the form

(I �A
 hJ)(Y (j)
n

� Y (j�1)
n

) = �R(Y (j�1)
n

) ; (5)

where, for any X 2 IRsd, R(X) = X � 1l
 yn�1�h(A
 I)F (X), and J stands

for an approximation to the Jacobian of f evaluated in y(tn�1), i.e.,

J �
@f

@y
(y(tn�1)) :

3



Again Y
(0)
n is produced by a predictor formula and (5) is applied as many times

as needed to make Y
(j)
n su�ciently close to the true solution of (2).

The dimension of the linear system (5) is sd, which makes IRKs relatively

expensive to implement. For this reason they are not frequently used in prac-

tice. Most industrial codes for sti� problems are based an Backward Di�eren-

tiation Formulas (BDFs), which require the solution of linear systems only of

dimension d in every Newton iteration (see, e.g., [?]). On the other hand, BDFs

do not allow for parallelism across the method and from the famous Dahlquist

order barrier it follows that having high order and being unconditionally stable

are two properties that cannot be combined by BDFs. Another disadvantage

is that the BDF of order k is a k-step method; it bases the approximation yn
on information collected in the previous k subintervals. Evidently, this com-

plicates the change of stepsizes. Moreover, if for some reason the method has

to be restarted frequently, e.g. due to discontinuities in the function f , then in

every restart one has to apply the one-step BDF of �rst order and `to build up'

the order in the subsequent steps.

For IRKs the situation is opposite. From (2){(3) it is clear that these are

one-step methods and, although expensive to implement on a sequential com-

puter (a computer with only one processor), IRKs can bene�t from parallelism

across the method and are unconditionally stable. Although most parallel

methods in the forthcoming papers are not based on pure IRKs but on some

variant, the main idea behind these is to use some sort of Newton process, such

that it only requires the solution of linear systems of dimension d and that the

additional processors can solve several of these systems in parallel.

Summarizing, the parallel IRK based methods can still cherish the low

e�ective costs of a BDF method, but overcome the shortcomings of BDF. As

we will see, the way in which this goal is achieved in the paper by Van der

Houwen and Sommeijer and those by Chartier and Voss (on DIMSIMs and

MIRKs, respectively) di�ers considerably.

The �nal goal of developing numerical methods is to be able to solve real-life

problems. Therefore it is not su�cient to construct numerical methods, but one

also needs to develop a piece of software that incorporates these methods. It is

a long road from method to software. First of all, one has to decide for which

problem class the code should be written. Many applications require a much

broader formulation than (1). For example, to model the behavior of a train

on a rail track, one has to add algebraic (meaning not containing di�erentials)

side conditions, which state that the train and rail track can not intersect. The

resulting system is called a set of Di�erential{Algebraic Equations (DAEs). An

even broader class is that of Implicit Di�erential Equations (IDEs), which are

of the form

g(t; y; y0) = 0 ; g : IR� IRd
� IRd

! IRd
; y : IR! IRd

;

t0 � t � tend ; y(t0) = y0 ; y0(t0) = y00 ;
(6)

where some components of g may contain di�erentials and some not.

4



A complication of IDEs, which does not apply to ODEs, is that some com-

ponents of the IDE solution may be more sensitive to perturbations. These

components are said to be of higher index. In the paper by De Swart &

Lioen in this issue, we will see an instance of such a situation.

Many other questions have to be answered when implementing these tech-

niques, e.g., how to form a prediction for the Newton process, when to evaluate

the Jacobian, how many Newton iterations should be done, is the error con-

ducted in one time step small enough, how to vary the stepsize? S�derlind

contributed a paper that explains how one can answer these questions using

control theory.

To get insight in the performance of a solver compared to other solvers,

when applied to di�erent problems, it is important to have a well-de�ned test

protocol and representative test problems. Proper testing of software is a whole

�eld by itself and will be discussed in the paper by De Swart and Lioen.

5


